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Modeling long-range memory with stationary Markovian processes
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In this paper we give explicit examples of long-range correlated stationary Markovian processes y(f) where
the stationary probability density function (pdf) shows tails which are Gaussian or exponential. These pro-
cesses are obtained by simply performing appropriate coordinate transformations of a specific power—law
correlated additive process x(), already known in the literature, whose pdf shows power-law tails. We give
analytical and numerical evidences that although the new processes are Markovian and have Gaussian or
exponential tails, their autocorrelation function shows a power-law decay with logarithmic corrections. For a
generic continuous and monotonously increasing coordinate transformation, we also analytically investigate
what is the relationship between the asymptotic decay of the autocorrelation function and the tails of the
stationary pdf. Extreme events seem to be associated to long-range correlated processes with power-law
decaying autocorrelation function. However, the occurrence of extreme events is not necessary in order to have
more general long-range correlated processes in which the autocorrelation shows a slow decay characterized by
a power-law times a correction function such as the logarithm. Our results help in clarifying that even in the
context of stationary Markovian processes long-range dependencies are not necessarily associated to the
occurrence of extreme events. Moreover, our results can be relevant in the modeling of complex systems with
long memory. In fact, we provide simple stationary processes associated to Langevin equations with white
noise thus confirming that long-memory effects can be modeled in the context of continuous time stationary

Markovian processes.
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I. INTRODUCTION

Stochastic processes have been used to model a great va-
riety of systems in disciplines as disparate as physics [1-6],
genomics [7,8], finance [9,10], climatology [11], and social
sciences [12]. One possible classification of stochastic pro-
cesses takes into account the properties of their conditional
probability densities. In this respect, Markov processes play
a central role in the modeling of natural phenomena. In the
framework of discrete time stochastic processes, a process
x(t) is said to be a Markov process if the conditional prob-
ability density P(X,.,.t,.1|%,.1,:-..3%;.1;) depends only on
the last value x,, at 7, and not on the previous values x,,_; at
t,_1> X,_p at t,_», etc. More generally, the transition probabil-
ity of any Markov process fulfills the Chapman-Kolmogorov
equation [2]. It is worth noticing that a Markov process is
fully determined by the knowledge of the probability density
function (pdf) W(x,) of the process and the transition prob-
ability P(x,41,tu41]%,.1,). When the Markovian process is
continuous both in space and time, the time evolution of the
pdf is described by a Fokker-Planck (FP) equation. Such
level of simplicity is rather unique among stochastic pro-
cesses. In fact, a non-Markovian process is characterized by
an infinite hierarchy of transition probabilities. In this case,
the time evolution of the pdf is described by a master equa-
tion rather than a simpler FP equation.

Another classification of stochastic processes considers
the nature of correlation of the random variable. Under this
classification, random variables are divided in short-range
and long-range correlated variables. Short-range correlated
variables are characterized by a finite mean of time scales of
the process whereas a similar mean time scale does not exist
for long-range correlated variables [13]. An equivalent defi-
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nition can be given by considering the finiteness or infinite-
ness of the integral of the autocorrelation function of the
random process [14—16]. In the presence of long-range cor-
relation, the time integral s(z) of the process x(¢) can show
anomalous diffusion [17,18]. In the case we will consider in
this paper, s(¢) is a superdiffusive stochastic process showing
(|As(1)[*) ~D,1” where y>1 and D, is a constant. Superdif-
fusive stochastic processes have been observed in several
physical systems. A classical example is Richardson’s obser-
vation that the relative separation € of two particles moving
in a turbulent fluid at time ¢ follows the relation (€%(¢)) o
[19]. Other examples include anomalous kinetic in chaotic
dynamics due to flights and trapping [20], dynamics of ag-
gregate of amphiphilic molecules [21], dynamics of a tracer
in a two-dimensional rotating flow [22], noncoding regions
of complete genomes [23], and volatility in financial markets
[24].

In the context of stochastic processes which admit a gen-
eralized Langevin equation, several non-Markovian [25-29]
or nonstationary [30] models of long-range correlated and
anomalous diffusing processes have been developed. How-
ever, these models mostly rely on generalizations of the
Langevin equation or FP equation as to include convolutions
with memory kernels or the use of fractional derivatives. In
this paper we will consider the issues of long-range correla-
tion and anomalous diffusion in the context of stochastic
stationary Markovian processes that can be described by a
nonlinear Langevin equation, with a white-noise term, and a
FP equation.

Several stationary Markovian processes are short-range
correlated. In fact, the paradigmatic Markovian process is the
Ornstein-Uhlembeck (OU) one [31], whose autocorrelation
function is the exponential function p(7)=e~"7, where T is
the time scale of the process. Although in the OU process
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there is one single time scale, a general Markovian stationary
process can be multiscale, i.e., it may admit either a discrete
or a continuum set of time scales. In the last case, when the
largest time scale is removed to infinity the process can even
be long-range correlated. The paradigmatic Markovian pro-
cess with power-law autocorrelation function is given by the
family of processes considered in Ref. [32]. These are sta-
tionary Markovian power-law correlated processes that were
introduced in the context of diffusion in optical lattices and
semiclassically describe the motion of atoms in a one-
dimensional optical lattice formed by two counterpropagat-
ing laser beams perpendicularly polarized. For a certain
choice of the relevant parameters the processes become long-
range correlated.

The existence of a power-law-decaying autocorrelation
function in the processes of Ref. [32] is intimately related to
the existence of power-law tails in the stationary pdf. This is
easily understood by considering that the processes of Ref.
[32] describe particles moving in a confining Smoluchowski
potential which asymptotically grows like log(x). If one
compares such slow growth with the one associated to the
OU process, whose Smoluchowski potential grows like x?, it
is easy to recognize that in the case of Ref. [32] (i) a particle
can reach positions far away from the center of the potential
because it is subject to a relatively weaker force and (ii) if a
particle reaches a position X, then it is not suddenly recalled
toward the center of the potential and therefore it can explore
for relatively long times the regions around X. Loosely
speaking, the time series of the processes of Ref. [32] can
show persistencies and clustering of extreme events. The
theory of extreme events is a consolidated area of research.
The literature in this field can be traced back to the pioneer-
ing work of Gumbel and Gnedenko [33,34] and currently
finds applications in fields such as finance and natural and
social sciences [35,36].

In this context, the processes mentioned above perfectly
fit the features of the model proposed in Ref. [37], where
long-range dependencies are shown to explain the clustering
of extreme events in climate records. However, one could
have in principle slowly decaying autocorrelation functions
without necessarily observing the occurrence of extreme
events. One such example is given by the Fractional Brown-
ian motion (FBm) [13], which is a stochastic process where
the autocorrelation function decays like a power law and the
stationary pdf is Gaussian. We are here interested in under-
standing whether also in the context of stationary Markovian
processes it is possible to have long-range correlation with-
out necessarily observing the occurrence of extreme events.
In this paper we give explicit examples of long-range corre-
lated stationary Markovian processes where the stationary
pdf shows tails which are Gaussian or exponential. We will
introduce such processes starting from appropriate coordi-
nate transformations of an additive processes introduced in
Ref. [32].

The paper is organized as follow. In Sec. II we review the
eigenfunction methodology used to analyze the correlation
properties of a given stochastic process and introduce a spe-
cific power-law correlated process with power-law tails in
the stationary pdf. In Secs. III and IV we present examples of
long-range correlated stochastic processes with Gaussian and
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exponential tails in the stationary pdf respectively. In Sec. V
we present an analytical argument that shows how the
asymptotic decay of the autocorrelation function is linked
with the tails of the stationary pdf. In Sec. VI we finally draw
our conclusions.

II. POWER-LAW TAILS IN THE PDF

In this section we briefly review the family of stochastic
processes introduced in Ref. [32] and whose ergodicity prop-
erties have been investigated in Ref. [38]. A similar class of
such processes has been considered in Ref. [39].

Let us consider a continuous stationary Markovian
stochastic process x(f) whose pdf W(x,t) is described
by the FP equation with constant diffusion coefficient
W==3[DV(x)W]+DFW. For the sake of simplicity, in
this study we set D=1. In general, the eigenvalue spectrum
of the FP equation describing a stationary process consists of
a discrete part Ng=0,\q,... Ay and a continuous part
N, +%[ (N,=\,) associated with eigenfunctions ¢,. The
stationary pdf is W(x)=¢,. The FP equation with constant
diffusion coefficient can be transformed into a Schrodinger
Eq. (3) with a quantum potential Vg(x)=[D"(x)]*/4
+9,DW(x)/2. The eigenvalue spectrum of the Schrodinger
equation is equal to the eigenvalue spectrum of the FP equa-
tion. The relation between the eigenfunctions of the FP equa-
tion and the eigenfunctions ¢ of the Schrodinger equation is
@\ = . For a stationary process the two-point probability
density function W,(x,z;x’,1+7) can be expressed in terms
of the eigenfunctions of the Schrodinger equation. Specifi-
cally, one can write

A

W (x,t5x" 1+ 7) = () l//o(X’)( > (e

A=\

+ f dhlﬂx(x)%(X’)e‘”)- (1)

\

c

Equation (1) extends the analogous expression valid for a FP
equation with only discrete spectrum [3] to the case in which
there also exists a continuous part of the spectrum. By direct
inspection, it can be shown that W, fulfills the Chapman-
Kolmogorov equation. In order to evaluate the autocorrela-
tion function p(7)=[{x(t+7)x(2))—(x(£))*]/[(¥*(2))—{x(2))?]
of the stochastic variable x(z), we make use of the expression

N

P +*
(x(t+ Dx(D))= X, Cle™™+ f Cle™Md\, (2)
A=\ \

c

where C\ = [dxx¢,(x). Equation (2) follows from Eq. (1)
and from the definition of the autocovariance function

(x(t+ 7)x(2)) =f f“" dx'dxx'xWy(x,t;x",t+ 7). (3)

Equation (2) holds true under the assumption that the inte-
grations in [dx’, [dx, and [d\ can be interchanged.

The asymptotic temporal dependence of the autocorrela-
tion function can have a different behavior conditioned by
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the properties of the eigenvalue spectrum [40-43]. Specifi-
cally, following [44] one can distinguish three different
cases, depending on the existence of a continuum spectrum
of eigenvalues and whether or not such spectrum is attached
to the ground state.

In fact, the class of processes introduced in Ref. [32] be-
longs to the one admitting a continuum part of the spectrum
attached to the ground state. In this paper we will consider
the specific stationary Markovian processes associated with a
quantum potential Vg given by

- V() lf |X| =L
VS(X) =

4
Vix® if x| >L, “)

where L, V,,, and V; are positive constants. The reason for
considering such specific potential, among all those fulfilling
the requirements of Ref. [32], is that it is exactly solvable
and therefore it will allow us to perform most calculations
analytically.

The parameters L, V|;, and V| can be chosen in such a way
that the spectrum contains one single discrete eigenvalue
No=0 and a continuous part for A >0. As a result, the param-
eters L, V), and V; are not independent. In fact, the continu-
ity of 4.4y in x=L provides a relation between them. The
Langevin equation of the process is

x=h(x)+dz,
o ~2\Vy tan(\Vgx) if |a| =L
X)=
(1-V1+4V)/ix if [x]>L,
!’_ /_
Vi=L tan(\VyL)[1 + L tan(\V,L)]. (5)

The associated FP equation describes the dynamics of an
overdamped particle moving in a Smoluchowski potential
U(x)=—Jdxh(x) that increases logarithmically in x. For

V2SErt[(1 = a(x))Erf(Lr/V2s) + a(x)(1 + )]
— V2sErt[(1 = a(= x))Erf(Lr2s) + a(=x)(1 + )] x<-L

folx) =

rx
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|x|=L, the _ eigenfunction of the ground state is
=B, cos(ch) whereas for |x|>L it decays according to
Yo=Ax!"1**VD2 The constants A, and B, are set by im-
posing that ¢, is normalized and continuous in x=L. It is
worth noting that for |x|> L the stationary pdf W(x) of the
stochastic process is a power-law function decaying as |x|™*
with a@=\1+4V,-1. The normalizability of the eigenfunc-
tion of the ground state is ensured if a>1. In the present
study we consider stochastic processes with finite variance
which implies @>3. Due to parity arguments, only the odd
eigenfunctions w(“dd) of the continuous spectrum give a non-
vanishing contribution to Cy. For |x|>L the eigenfunction

(Odd) is a linear combmatlon of Bessel functions
1,//(°dd) =AxJ,(VAx) + B, \xY (\Ax), where v=(a+1)/2. For
x| =L we find ¢{°¥=D, sin(\V,+\x). The coefficients A,,
B,, and D, are ﬁxed by imposing that (04D and its first
derivative are continuous in x=_L and that w"d are orthonor-
malized with a ¢ function of the energy. Similar conditions
apply to the even solutions.

By using these eigenfunctions we obtain an exact expres-
sion for C,. The further integration required in Eq. (2) to
obtain (x(z+ 7)x(z)) cannot be performed analytically. By us-
ing Watson’s lemma [45] and by considering that the first
term of the Taylor expansion of Cj is proportional to \(*~>2
for small values of A, for large values of 7 one gets
(x(t+7)x(t)y < 7B, where B=(a—3)/2. That indicates that
this stochastic process is stationary, Markovian, and asymp-
totically power-law autocorrelated. When 3 <a<<5 the pro-
cess is long-range correlated.

III. GAUSSIAN TAILS IN THE PDF

In this section we explicitly present a stationary Markov-
ian process with a slowly decaying autocorrelation function
and a stationary pdf with Gaussian tails. In fact, let us con-
sider the coordinate transformation

x> L

=L,

Lr\ VO sec(L V0)2 + r tan(L Vo)

—
\2msVy eL P12

a(x) =

k)

2A(2)(Lx“ —xL%)

(a— DL

where r is a real positive constant. It is straightforward
to prove that f, is continuous and monotonic. By using
the Ito lemma, one can show that starting from the
process of Eq. (5), in the coordinate space y=f,(x)
one gets a multiplicative stochastic process whose stationary
pdf is

2

W)= Nye™ 2 y[>Lr ©)
V)= = -

Ny cos(VVoy/lr) [y[=Lr,

where N; and N are normalization constants that can be
analytically computed by imposing that W,(y) is continuous
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FIG. 1. The figure shows the drift coefficient H(y) (top panel)
and diffusion coefficient G(y) (bottom panel) of the process defined
by the coordinate transformation of Eq. (6) for the case when
L=1.0, V(y=0.987 (i.e., ®=3.05), and s=1.0 (i.e., r=1.2096).

in y=* Lr and it is normalized to unity. The real constant r
is fixed by imposing that the diffusion coefficient G(y) of the
multiplicative stochastic process in the y coordinate space is
continuous in y= =* Lr. In Fig. 1 we show the drift coefficient
H(y) (top panel) and diffusion coefficient G(y) (bottom
panel) for the case when L=1.0, V;,=0.987 (i.e., «=3.05),
and s=1.0 (i.e., r=1.2096). The diffusion coefficient G(y) is
continuous in y= * Lr although its first derivative is discon-
tinuous. The drift coefficient H(y) suffers a discontinuity in
y= % Lr. We recall that a finite discontinuity in the drift co-
efficient is not usually pathological for the solutions of the
Fokker-Planck equation (see for example the V-shaped po-
tential of Ref. [3]). As long as the probability current is
concerned, it is straightforward to prove that the density
current J(y,?) in the new variables is simply given by
J(y,t)= j[f;l(y),t], where j(x,7) is the density current of the
process of Eq. (5). The function fe "is well defined because
fg 1s continuous and monotonic.

The autocorrelation function of the process defined
by the coordinate transformation of Eq. (6) is given by

po(D) =1+ D)y (1) = ((0)))/ (D)= (¥(1))?), where

OWy(t+7)= Jm dANCre™,
)

(

Ch= J duxf o () tho(x) (%), (7)

—o0

where (x) and i, (x) are the eigenfunctions of the process
of Eq. (5). Equation (7) can be used to numerically obtain the
autocorrelation of the process defined by the coordinate
transformation of Eq. (6).

In the top panel of Fig. 2 we report the results of the
numerical integration of Eq. (7) for the case when L=1.0 and
s=1.0, and the V|, values are chosen in such a way that the
parameter « assumes the values shown in the legend. The
asymptotic behavior of these autocorrelation functions seems
compatible with a power law 7. In the bottom panel of

o

FIG. 2. (Color online) In the top panel we report the results of
the numerical integration of Eq. (7) for the case when L=1.0 and
s=1.0, and the V|, values are chosen in such a way that the param-
eter  assumes the values shown in the legend. In the bottom panel
we report the values of the exponents S, obtained by performing a
nonlinear fit of the autocorrelation function shown in the top panel.

Fig. 2 we report the values of the exponents , obtained by
performing a nonlinear fit of the autocorrelation function
shown in the top panel. Such values show a dependence from
the a parameter which seems compatible with a linear law
Bg=a/2-n,, with 7,~0.61. For values a<27,+1 we get
B, <1, ie., the stochastic process thus generated is long-
range correlated. It is worth noticing that the autocorrelation
function (y(7)y(t+7)) does not show any dependence from
the s parameter.

In the top panel of Fig. 3 we show the results of numerical
simulations of the autocorrelation function performed for the
case when L=1.0, V,=0.987 (i.e., @=3.05), and s=1.0 (i.e.,
r=1.2096). The solid (red) line shows the theoretical predic-
tion obtained from Eq. (7), while the open circles show the
result of the numerical simulations. By performing a nonlin-
ear fit (dashed blue line), the autocorrelation function shows
an asymptotic decay compatible with a power law 77, with
B,=0.86. In the inset of the top panel we show the numerical
simulation (circles) relative to the mean-square displacement
(|As(#)|*), where s(t) is the stochastic process obtained by
integrating over time the process defined by the coordinate
transformation of Eq. (6). A nonlinear fit (solid blue line)
shows that (|As(f)|*)ect® with §=1.21, thus confirming that
our process behaves like a superdiffusive long-range corre-
lated stochastic process in the range where the numerical
simulations were performed. The bottom panel of Fig. 3
shows the stationary pdf of the process. Again the solid (red)
line shows the theoretical prediction of Eq. (6), while the
open circles show the result of the numerical simulations. In
the inset we show the same pdf in a shorter range of values
in order to emphasize that inside the region |y| < Lr the pdf
has a behavior different from Gaussian.

Those shown in Fig. 3 are time-average numerical simu-
lations performed according to the relation
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FIG. 3. (Color online) The figure shows time-average numerical
simulations performed according to Eq. (9) performed for the case
when L=1.0, V,=0.987 (i.e., ®=3.05), and s=1.0 (i.e., r=1.2096).
The simulation parameters are M =10 in the region 7e[1,10] and
M=20 in the region 7=10, T=1.01X10'". The time step was
At=0.005. In the top panel we show the results for the autocorre-
lation function. The solid (red) line shows the theoretical prediction
obtained from Eq. (7), while the open circles show the result of the
numerical simulations. By performing a nonlinear fit (dashed blue
line), the autocorrelation function shows an asymptotic decay com-
patible with a power law 7P, with Bg=0.86. In the inset of the top
panel we show the numerical simulation (circles) relative to the
mean-square displacement (|As(r)]?). A nonlinear fit (solid blue
line) shows that {|As(f)*)¢® with 6=1.21. The bottom panel
shows the stationary pdf of the process. Again the solid (red) line
shows the theoretical prediction of Eq. (6), while the open circles
show the result of the numerical simulations.

1 T
p(7) = ;f dix,()x,(t + 7), (8)

0

where T is the length of the simulated time series and x..(¢) is
one realization of the process. Indeed, in order to improve
the statistical reliability of our numerical simulations, in the
region 7=1 we have also averaged over a number M of
different realizations of the process,

1 51 (7

pr(7) = ﬂj_zl 7J, dx(0)x,(t + 7). 9)
The data shown in the figure are the mean and the standard
deviations of the M autocorrelation values computed in each
iteration for each time lag. The values of M are M =10 in the
region 7e[1,10] and M =20 in the region 7= 10. The size of
each time series was T=1.01 X 10'" with a time step of
Ar=0.005. The starting points of the simulated time series
were all the same with xj(0)=0.1, where j=1,...,M. In or-
der to simulate the process in the y coordinate space, we start
by simulating the process of Eq. (5) and compute y=f(x) for
each simulated x value. However, we have explicitly checked
that such procedure is equivalent to a direct simulation of the
Langevin equation obtained starting from H(y) and G(y).

PHYSICAL REVIEW E 79, 031116 (2009)

The existence of power-law correlated processes with
Gaussian tails does not contradict the Doob Theorem [46]. In
fact, such theorem deals with the case when the process ad-
mits stationary pdfs and two-point conditional transition
probabilities which are both nonsingular and Gaussian on the
whole real axis.

IV. EXPONENTIAL TAILS IN THE PDF

In this section we explicitly present a stationary Markov-
ian process with a slowly decaying autocorrelation function
and a stationary pdf with exponentially decaying tails. In
fact, let us consider the coordinate transformation

P
1
—log[ y(x = L) + "] x>L
Y
=y 1 10
fe(x) _ _IOg[’y(—X—L) : €7Lr] x<_L ( )
Y
7 x| =L.

By using the Ito lemma, one can show that starting from the
process of Eq. (5), in the coordinate space y=f,(x) one gets
the multiplicative stochastic process described by

y=H(y)+GO)I'Q),

2y (1+a)e”+A

- e ePHA
H(y)= — —
—2r\V, tan(\Voy/r) |yl =Lr,

|y| >Lr

e |y| >Lr
G(y) =
lyl=Lr,
A=yL—-e"", (11)

where r is a real positive constant which is fixed by imposing
that the diffusion coefficient G(y) is continuous in y= % Lr.
It is straightforward to prove that such process admits the
stationary pdf,

NeeT?(A+e?) |y[>Lr

(12)
Ny COS(\“'VO)’/V)2 ly|=Lr,

We(y) =

whose tails are asymptotically exponential. Ny and Ny are
normalizations constants that can be analytically computed
by imposing that W,(y) is continuous in y==*Lr and it is
normalized to unity.

The autocorrelation function of the process of Eq. (11)
can be obtained starting from Eq. (7) with f,(x) now replaced
by f,(x) of Eq. (10).

In the top panel of Fig. 4 we report the results of the
numerical integration of Eq. (7) for the case when L=1.0 and
y=1.0, and the V|, values are chosen in such a way that the
parameter « assumes the values shown in the legend. The
asymptotic behavior of these autocorrelation functions seems
compatible with a power law 7. In the bottom panel of
Fig. 4 we report the values of the exponents 3, obtained by
performing a nonlinear fit of the autocorrelation function
shown in the top panel. Such values show a dependence from
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FIG. 4. (Color online) In the top panel we report the results of
the numerical integration of Eq. (7) for the coordinate transforma-
tion of Eq. (10) when L=1.0 and y=1.0, and the V| values are
chosen in such a way that the parameter « assumes the values
shown in the legend. In the bottom panel we report the values of the
exponents 3, obtained by performing a nonlinear fit of the autocor-
relation function shown in the top panel.

the a parameter which seems compatible with a linear law
B.=al2—-1,, with 7,~0.68. Differently form the Gaussian
case, now the autocorrelation function {(y(¢)y(z+ 7)) seems to
show some dependence from the y parameter. As an ex-
ample, we have computed the autocorrelation functions for
the same values as above and with y=1.0 replaced by
v=10.0. Again we find that 7 depends upon « according to a
linear law 8,=a/2-7,, where now 7,~0.62.

In the top panel of Fig. 5 we show the results for the
case when L=1.0, V,=1.020 (i.e., «=3.21), and y=1.0
(i.e., r=0.567). The solid (red) line shows the theoretical
prediction obtained from Eq. (7), while the open circles show
the result of the numerical simulations. By performing a non-
linear fit (dashed blue line), the autocorrelation function
shows an asymptotic decay compatible with a power law
7P, with 8,=0.79. In the inset of the top panel we show the
numerical simulation (circles) relative to the mean-square
displacement (|As(#)|?), where s(t) is the stochastic process
obtained by integrating over time the process defined by the
coordinate transformation of Eq. (10). A nonlinear fit (solid
blue line) shows that (|As(¢)|*)o#° with §=1.26, thus con-
firming that our process behaves like a superdiffusive long-
range correlated stochastic process in the range where the
numerical simulations were performed. The bottom panel of
Fig. 5 shows the stationary pdf of the process. Again the
solid (red) line shows the theoretical prediction of Eq. (12),
while the open circles show the result of the numerical simu-
lations. In the inset we show the same pdf in a shorter range
of values in order to emphasize that inside the region
|y| < Lr the pdf has a behavior different from exponential.

Those shown in Fig. 5 are time-average numerical simu-
lations performed according to Eq. (8). Differently from the
previous case, when simulating the process we directly con-
sider the Langevin equation of Eq. (I11). Again, in order to
improve the statistical reliability of our numerical simula-
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FIG. 5. (Color online) The figure shows time-average numerical
simulations performed according to Eq. (9) performed for the case
when L=1.0, V,=1.020 (i.e., =3.21), and y=1.0 (i.e., r=0.567).
The simulation parameters are M =10 in the region 7e[1,10] and
M=20 in the region =10, T=1.025X10'!. The time step was
Ar=0.01. In the top panel we show the results for the autocorrela-
tion function. The solid (red) line shows the theoretical prediction
obtained from Eq. (7), while the open circles show the result of the
numerical simulations. By performing a nonlinear fit (dashed blue
line), the autocorrelation function shows an asymptotic decay com-
patible with a power law 7%, with 8,=0.79. In the inset of the top
panel we show the numerical simulation (circles) relative to the
mean-square displacement (|As()|*). A nonlinear fit (solid blue
line) shows that {|As(z)|*)<t® with 6=1.26. The bottom panel
shows the stationary pdf of the process. Again the solid (red) line
shows the theoretical prediction of Eq. (12), while the open circles
show the result of the numerical simulations.

tions, in the region 7>1 we have also averaged over a num-
ber M of different realizations of the process, according to
Eq. (9). The data shown in the figure are the mean and the
standard deviations of the M autocorrelation values com-
puted in each iteration for each time lag. The values of M are
M=10 in the region 7e[1,10] and M=20 in the region
7=10. The size of each time series was T=1.025 X 10! with
a time step of Ar=0.01. The starting points of the simulated
time series were all the same with x;(0)=0.1, where
j=1,....M.

V. AUTOCORRELATION ASYMPTOTIC
DECAY AND TAILS IN THE PDF

Let us consider a generic coordinate transformation
y=f(x), where f(x) is a continuous monotonously increasing
function. The autocorrelation function (y(¢)y(¢+ 7)) is given
by Eq. (7) with f,(x) replaced by the f(x). It is in general
quite hard to analytically perform the various integration re-
quired in Eq. (7). However, one can obtain asymptotic results
that are valid in the large time limit. As illustrated in Ref.
[45], the large time behavior of (y(r)y(t+ 7)) is determined by
the small energy behavior of C,=[*Zdxf(x)y(x) ¢ (x). The
main contribution to C, comes from the integration in the
domain [L,].
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_By performing the change of variable x=1/v and
VA=1/& one gets

L 1 1
C)\onA)\f dvv(“_j)/2f<—)./,,<—), (13)
0 v vé

where we used the explicit form of ), and ;, given in Sec.
II. In principle, in Eq. (13) one should consider a contribu-
tion depending from Y,(-). However, one can explicitly show
that such contribution is of the same order as the one we are
already considering.

Equation (13) makes it clear that the small energy behav-
ior of C, strictly depends on the specific shape of the coor-
dinate transformation f(x) at large x values. As an illustrative
example we will consider the coordinate transformation of
Eq. (10).

We preliminary observe that

G'(n) - G(u)log ¢
& |

where G(-) is the Mellin transformation of the function g(-)

f dvg(&v)v* ' logv = (14)

and G’(-) is its first derivative. In the case of
g(&v)=J,[1/(vé)] we get
1 Il(v-2)/2
Glo) = ——TLr=22] (15)

21+ (v+2)2]°

The above result, together with those reported in chapter 9 of
Ref. [45], allows us to conclude that the small energy behav-
ior of C, is given by

A -3 -3
C\ = —°[G<a >log V—G’<QT>}>\<“—3>/4

0% 2
+@4a3%wwm@
2y

+AOE a‘yG<s + a;

s=1

3 ))\(0{—3)/4+S/2’ (16)

where a,=(-A)*/(sy**!). By using the Watson lemma and
the results in chapter 9 of Ref. [45] one finally gets

1 1
(y(O)y(t+ 1) = C, Ha-1)2 +C 7_(a—l)/210g T

1
+C27.(a—l)/2(10g T)2+ el (17)

where the other terms in the series expansion are of the order
of Fa=l2+s/2 op He=D/2+52 160 7 with s=1,2,3,.... The co-
efficients Cy, Cy, C», ... in the above expansion can be easily
computed in terms of the coefficients of the asymptotic ex-
pansion of Eq. (16). When a<3 the process is long-range
correlated.

The above result must be compared with the numerical
one shown in Fig. 4. In that case we found that the
asymptotic behavior of the autocorrelation function is com-
patible with a power-law behavior 7% with 8,=a/2—- 7, and
77,~0.68. The result of Eq. (17) confirms the «/2 depen-
dence in the power-law exponent. However, the value of 7,
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does not have a correspondence in the analytical result of Eq.
(17). This is no surprise since Eq. (17) predicts a logarithmic
correction to the power law that is usually quite hard to de-
tect numerically. Moreover, the coefficients Cy, C;, C,, ... in
the asymptotic expansion of Eq. (17) are of comparable mag-
nitude. Therefore, in the range where the numerical integra-
tions were performed one expects to see a combination of
power laws (with logarithmic corrections), rather than a
single one. These results are in qualitative agreement with
those of Ref. [47].

Equation (13) also makes it clear what is the relationship
between the large time behavior of the autocorrelation func-
tion and the tails of the stationary pdf:

1 A2 1
f'(x) “x® x=f’1(y)'

In fact, the large time behavior of (y(r)y(t+7) is determined
by the behavior of f(1/v) for small values of v, i.e., the
behavior of f(x) for large values of x. Since y=f(x) is con-
tinuous and monotonously increasing we have that the large
values of x are mapped into large values of y. Therefore the
asymptotic behavior of f(x) for large values of x determines
the behavior of the stationary pdf in the new variables W(y)
for large values of y.

Suppose that f(x) admits a power-law series expansion for
small values of v=1/x: f(x)=2Xa,’. Then, by using the
results in Ref. [45] one can prove that the autocorrelation
function behaves like (y(r)y(t+7) =~ZR,1/7"* 2 At the
same time, one can also prove that the stationary pdf
admits power-law tails. In fact, the existence of the above
series  expansions guarantees that the derivatives
d'f-(y)/dy" are well defined for 1/y—0. For example, in
the simple case when y=x“, then W(y)=y(®+eD/ and
(Oy(t+7) =7+@52 In this case we have a stationary
Markovian power-law correlated process that is in the basin
of attraction of the Frechet distribution [35]. This is an ex-
ample, in the context of stationary Markovian processes, of
the model proposed in Ref. [37], where long-range depen-
dencies are shown to explain the clustering of extreme
events.

Whenever f(x) admits a series expansion for small values
of v=1/x which is not purely in terms of power laws then
one can have stationary Markovian processes which are pos-
sibly long-range correlated and whose stationary pdf shows
tails which are not algebraic for large values of y, as in the
explicit examples of Secs. III and IV. In this case the pro-
cesses are in the basin of attraction of the Gumbel distribu-
tion [35]. These examples show that long-range dependen-
cies are possible without necessarily having clustering of
extreme events.

W(y) = (18)

VI. CONCLUSIONS

We have shown stationary Markovian processes that are
long-range correlated and have a stationary pdf with tails that
can be Gaussian and asymptotically exponential. The pro-
cesses are obtained by simply performing a coordinate trans-
formation of the additive process described in Eq. (5). Start-
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ing from such specific process, we have given (i) analytical
evidence that the considered processes have the mentioned
stationary pdfs and (ii) numerical evidence that the decay of
the autocorrelation function is compatible with a power law
(y(t)y(t+ 1)< 7#, where B=a/2-7 and 7 is a parameter
that depends from the specific tails of the stationary pdf. The
above linear law holds true also in the case of the additive
process of Eq. (5), with =3/2. This numerical result is
partially confirmed by the analytical calculations of Sec. V,
where in the case of the process of Sec. IV it is explicitly
shown that the autocorrelation function decays with a power
law 7 (#2795 with logarithmic corrections.

It is worth remarking that in principle more general pro-
cesses can be obtained (i) by choosing different coordinate
transformations or (ii) by appropriately engineering the
shape of the quantum potential V(x) of Eq. (5) in the region
[-L,L]. This would result in a different shape of the station-
ary pdf in that region. When doing that, the asymptotic be-
havior of the autocorrelation function is not modified. In this
paper we preferred to consider a linear transformation and
V¢(x)==V, in the region [—L,L] only because this allows us
to analytically obtain the eigenfunctions on the whole real
axis and to obtain a numerical theoretical prediction for the
autocorrelation function of the stochastic processes consid-
ered.

Starting from the process of Eq. (5), stationary pdfs with
tails different from exponential or Gaussian ones can be ob-
tained by introducing appropriate coordinate transforma-
tions. In all cases the autocorrelation functions can be ob-
tained by using the same approach illustrated in this paper.

It is worth remarking that the existence of power-law cor-
related processes with Gaussian tails does not contradict the
Doob theorem [46] because the Doob theorem deals with the
case when the process admits a stationary pdf and a two-
point conditional transition probability which are both
Gaussian on the whole real axis and non singular. In our case
we only have Gaussian tails in the stationary pdf.

Our results help in clarifying that even in the context of
stationary Markovian processes long-range dependencies are
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not necessarily associated to the occurrence of extreme
events. In fact, the processes introduced in Secs. III and IV
are in the basin of attraction of the Gumbel distribution [35],
although the one of Eq. (5) is in the basin of attraction of the
Frechet distribution. In Sec. V we have analytically investi-
gated on the general relationship between the large time be-
havior of the autocorrelation function and the tails of the
stationary pdf. Specifically, by performing a coordinate
transformation y=f(x), where f(x) admits a power-law series
expansion at infinity one gets processes with power-law tails
in the stationary pdf and power-law correlated. When f(x)
does not admit a series expansion purely in terms of power
laws then one can have stationary Markovian processes
which are possibly long-range correlated and whose station-
ary pdf show tails which are not power law for large values
of y. Our results seem thus to neglect the possibility of per-
forming a coordinate transformation that generates power-
law correlated processes belonging to the basin of attraction
of the Gumbel distribution, although long-range correlated
processes are possible. In other words, extreme events seem
to be associated to long-range correlated processes with
power-law decaying autocorrelation function. However, the
occurrence of extreme events is not necessary in order to
have more general long-range correlated processes in which
the autocorrelation shows a slow decay characterized by a
power law times a correction function such as the logarithm
found in Sec. V.

Our results can be relevant in the modeling of complex
systems with long memory. In fact, processes with long-
range interactions are often modeled by means of the Frac-
tional Brownian motion (FBm), multifractal processes,
memory kernels, and other. Here we provide simple station-
ary processes associated to Langevin equations with white
noise, thus confirming that memory effects can still be mod-
eled in the context of continuous time stationary Markovian
processes, i.e., even assuming the validity of the Chapman-
Kolmogorov equation.
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